Wiskunde deel 1 (2007-2008)

Getallenkennis: - structuur van ons talstelsel - andere talstelsels, waaronder het Romeinse - deelbaarheid (delers en veelvouden, deelbaarheidskenmerken, kgv, ggd, ...) Bewerkingen: - de hoofdbewerkingen, hun betekenis, eigenschappen en toepassingen - precies hoofdrekenen - schattend hoofdrekenen - cijferen - het gebruik van de zakrekenmachine - een verantwoorde keuze maken tussen deze rekentechnieken - de didactiek van deze rekentechnieken Inleiding tot algemene wiskundedidactiek: - lessen wiskunde voorbereiden, leerplannen wiskunde, eindtermen.

A. Algemene competenties

  • 01. Denk- en redeneervaardigheid
  • 06. Beschikken over het vermogen tot communiceren van informaties, ideeën, problemen en oplossingen, zowel aan specialisten als aan leken
  • 07. Een ingesteldheid tot levenslang leren hebben
Toelichting:
In het eerste jaar werkt de student aan de volgende algemene competenties:
- denk- en redeneervaardigheid (wiskundige problemen kunnen oplossen, kritisch reflecteren over de eigen oplossingswijzen), - bereidheid om hiaten in basiskennis wiskunde bij te werken (levenslang leren), - communicatievermogen (een correcte wiskundetaal kunnen gebruiken, kunnen communiceren over eigen oplossingswijzen en die van anderen).

B. Beroepsgerichte/ Algemeen wetenschappelijke competenties

  • 08. Teamgericht kunnen werken
  • 09. Oplossingsgericht kunnen werken in de zin van het zelfstandig definiëren en analyseren van complexe probleemsituaties in de beroepspraktijk en het kunnen ontwikkelen en toepassen van zinvolle oplossingsstrategieën

C. Beroepsspecifieke competenties

  • C01 Begeleider leer- en ontwikkelingsprocessen.
  • C03 Inhoudelijk expert.
Toelichting:
In het eerste jaar werkt de student aan de beroepsspecifieke competenties:
- De student kan, voor de onderdelen die aan bod komen, vlot en met inzicht alle types oefeningen van de lagere school, met de nadruk op die niveau eind lagere school, oplossen en daarbij gebruik maken van technieken uit de lagere school. - De student kan het leerproces van kinderen bij getallen en bewerkingen (met nadruk op natuurlijke getallen) op een gepaste manier didactisch ondersteunen. - De student kan kinderen begeleiden in hun ontwikkelingsproces voor getallen en bewerkingen (vanaf het tweede leerjaar). - De student kan lessen, opgaven, ... over de geziene onderdelen, situeren in het leerplan en in de globale leerlijn van het leerdomein in de lagere school.

A. Volgtijdelijkheid

B. Competenties

De student heeft een positieve ingesteldheid t.o.v. het leren van wiskunde. De student bezit inzichten en vaardigheden op het niveau van het eind van het secundair onderwijs. Daarnaast heeft de student een goede kennis van de leerstof wiskunde uit de lagere school en beheerst hij deze leerstof ook inzichtelijk (basiskennis wiskunde). De student is in staat om opgaven op het niveau van de lagere school vlot en inzichtelijk op te lossen. Hij herkent in de dagelijkse realiteit situaties waarin wiskunde van de lagere school wordt toegepast.

A. Type

  • handboek
  • cursus
  • materiaal op WWW

B. Verplichte leermiddelen

- cursus van de docent met oefeningen - je eigen nota's van de lessen - eindtermen wiskunde voor de lagere school, leerplan wiskunde van het CRKLKO en de bijhorende toelichtingen voor de basisschool - Zo gezegd, zo gerekend, leerboek 5/6, Wolters-Plantyn - Mile (didactische software voor de lerarenopleiding) - handleidingen en oefeningenboeken van de in de lagere scholen gebruikte methodes - artikels uit tijdschriften o.a. Willem Bartjens - Tijdschrift voor wiskundeonderwijs - boeken over wiskundedidactiek - Toledo

C. Aanbevolen leermiddelen

Beke, N., Van Vreckem, J., Hoofdrekenen en cijferen / De zakrekenmachine in de lagere school, in: vierenveertigste pedagogische week Buys, K., 1997, Hoofdrekenen, je krijgt er nooit genoeg van, willem bartjens, jrg.17 nr. 1, 1997/1998 Eurobasis, handleiding voor het vierde leerjaar van de basisschool Feys, R., Van Iseghem, H., Meten en metend rekenen, Praktijkgids voor de basischool, aflevering 62, oktober 2002, Wolters Plantyn Helsen, W., Van Haudenhove, M., Remediërend cijferrekenen, een toepassing op de aftrekking, in: didactische publikaties van het Donchecentrum, van in, Lier, 1985 Luyten, R., 1995, Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie, deel 2, leereenheid 12: hoofdrekenen, Stoho, Acco Pluspunt, reken- wiskundemethode voor de basisschool, handleiding 4a Somers, H., Wuyts F., cursus opleiding leraar lager onderwijs, lerarenopleiding Vorselaar Sweers, W., Hoofdrekenen: een hoofdzaak, hoofdrekenen in de basisschool, Zwijsen, 1996 Van Biervliet, P., Cijferen: een kunst? Vier aanpakken voor het cijferrekenen, in: Praktijkgids voor de basisschool, leren, november 1998-185 Van Iseghem, H., cursus opleiding leraar lager onderwijs, lerarenopleiding Torhout Van Paemel, A., Breuken en kommagetallen, cursus opleiding leraar lager onderwijs, Brussel Vlaams Verbond van het Katholiek Basisonderwijs, Wiskunde: Leerplan, 1998 Vlaams Verbond van het Katholiek Basisonderwijs, Getallenkennis, Toelichtingen, 2002 Vlaams Verbond van het Katholiek Basisonderwijs, Bewerkingen, Toelichtingen, 2002 Vlaams Verbond van het Katholiek Basisonderwijs, Meten en metend rekenen, Toelichtingen, 2002 Vlaams Verbond van het Katholiek Basisonderwijs, Wiskunde in het lager onderwijs: oude en nieuwe doelen vergeleken, 2000 Willem Bartjens, jrg. 13 nr. 2 , 93-94, p. 20 e.v. http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Babylonian_numerals.html http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Egyptian_numerals.html http://www.fi.uu.nl/rekenweb

A. Types

  • hoorcollege
  • groepswerk
  • begeleide zelfstudie
  • Andere: demolessen

B. Omschrijving

A. Types

  • schriftelijk examen
  • paper/werkstuk
  • permanente evaluatie

B. Omschrijving

1ste examenperiode 2de examenperiode 3de examenperiode
% vorm % vorm % vorm
20 permanente evaluatie 10 taak
80 schriftelijk examen 90 examen
Er zijn de contacturen, waar de studenten de kansen hebben hun vragen te stellen. Verder zijn er de differentiatie-uren: tijdens deze uren worden de vragen van de basiskennis besproken, evenals onopgeloste problemen ivm. de cursus behandeld. Zelfstandig gemaakte oefeningen kunnen steeds bij de docent worden binnengeleverd ter correctie. Tot slot zijn er contactmomenten i.f.v. stagevoorbereiding en zijn alle mogelijkheden open om via Toledo te werken.
OA:
11268840
Code:
11268840
Vakcoördinator:
Adriaan Herremans
Semester:
1
Studiepunten:
3
Onderwijstaal:
Nederlands